Полезные советы. Программы. Настройка. Железо. Windows
  • Главная
  • Уроки
  • Регулируемый блок питания из двух атх. Переделка компьютерного блока питания

Регулируемый блок питания из двух атх. Переделка компьютерного блока питания

С чего начинается Родина... То есть я хотел сказать с чего начинается любое радиоэлектронное устройство, будь то сигнализация или ламповый усилитель - конечно с источника питания. И чем значительнее ток потребления девайса, тем мощнее требуется трансформатор в его БП. Но если приборы изготавливаем часто, то никаких запасов трансформаторов нам не хватит. А если ходить покупать на радиобазаре то учтите, что в последнее время стоимость такого трансформатора превысила все разумные пределы - за средний стоваттник требуют около 10уе!

Но выход всё-же есть. Это обычный, стандартный ATX от любого, даже самого простого и древнего компьютера. Несмотря на дешевизну таких БП (бэушный можно найти по фирмам и за 5уе), они обеспечивают очень приличный ток и универсальные напряжения. По линии +12В - 10А, по линии -12В - 1А, по линии 5В - 12А и по линии 3,3В - 15А. Конечно указанные значения не точные, и могут несколько отличаться в зависимости от конкретной модели БП ATX.


Вот как раз недавно я и делал одну интересную вещь - музыкальный центр из и корпуса от небольшой колонки. Всё бы хорошо, да вот учитывая приличную мощность усилителя НЧ, ток потребления центра в пиках басов достигал 8А. И даже попытка установить на питание 100 ваттный трансформатор с 4-х амперными вторичками нормального результата не дал: мало того, что на басах напряжение проваливалось на 3-4 вольта (что было хорошо заметно по затуханию ламп подсветки передней панели магнитолы), так ещё и от фона 50Гц никак не удавалось избавиться. Хоть 20000 микрофарад ставь, хоть экранируй всё, что можно.


А тут как раз на счастье, сгорел старый системник на работе. Но блок питания ATX ещё рабочий. Вот и приткнём его для магнитолы. Хотя по паспорту автомагнитолы и ихние усилители питаются напряжением 12В, но мы то знаем, что гораздо мощнее она будет звучать если подать на неё 15-17В. По крайней мере за всю мою историю ещё ни один ресивер не сгорел от лишних 5-ти вольт.

Так как в имеющемся БП ATX напряжение 12-ти вольтовой шины было всего чуть больше 10В (может потому и не работал системник? Поздно.), будем поднимать его изменением управляющего напряжения на 2-м выводе TL494. Принципиальную схему компьютерного блока питания смотрите тут.

Проще говоря поменяем резистор или вообще впаяем его на дорожки другого номинала. Ставлю два килоома и вот 10,5В превращаются в 17. Надо меньше? - Увеличиваем сопротивление. Стартуется компьютерный блок питания замыканием зелёного провода на любой чёрный.


Так как места в корпусе будущего музыкального центра не много - вытаскиваем плату импульсного блока питания ATX из родного корпуса (коробочка пригодится для моего будущего проекта), и тем самым уменьшаем габариты БП в два раза. И не забываем перепаять конденсатор фильтра в БП на более высокое напряжение, а то мало ли что...



А кулер? - Спросит внимательный и сообразительный радиолюбитель. Он нам не нужен. Эксперименты показали, что при токе 5А 17В в течении часа работы магнитолы на максимальной громкости (за соседей не беспокойтесь - два резистора 4 Ома 25 ватт), радиатор диодов был немного тёплый, а транзисторов - почти холодный. Так что нагрузку до 100 ватт такой БП ATX будет держать без проблем.

Обсудить статью ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX

пн, 25/08/2008 - 16:13 - Petrovich

Конструкция выходного дня.

Неожиданно наступила зима и за окном похолодало. А тут ещё бензин какой-то не тот залил. В общем король немецкого автопрома встал, где-то под Москвой как и 67 лет назад его старшие "проотцы". Аккумулятор сел, дальше пешком.... Для зарядки аккумулятора дома нашлась только пара сгоревших блоков ATX. Сразу добавлю, что эта "зарядка" не предназначена для восстановления, десульфатации и протчих не перспективных шаманских методов, чем занимались наши отцы (и я в том числе) в прошлой жизни из-за крайней убогости быта.

Это просто блок, позволяющий надёжно и наименьшими затратами зарядить "севший", но исправный аккумулятор. Суть его проста и внятна. Он выдаёт на выходе зарядный ток около 5-6 Ампер, при любой активной нагрузке, вплоть до короткого замыкания. При этом напряжение на выходе ни при каких обстоятельствах не превысит заданного значения. Я установил 14,6 вольт.

Сначала надо бы добиться работоспособности блока

По порядку для "чайников" о восстановлении блоков, общие правила:


Частота внутреннего генератора определяется по формуле:

где R и С это резистор и конденсатор на выводах 6 и 5 соответственно, то есть это не вырезать.

Вывод 14 это выход внутреннего источника опорного напряжения +5 вольт.

Выводы 1,2,15 и 16 это входы 2-х встроенных компараторов, которые пользователь может использовать по своему усмотрению, т.е. управлять шириной выходных импульсов ШИМ. Оба компаратора совершенно одинаковы с той лишь разницей, что компаратор с выводами 15-16 срабатывает с "задержкой" 80 мВольт. В попавших мне АТХ этот компаратор не использовался, 16 вывод заземлён, а 15 соединён на Uref, т.е. 14 вывод.

Вывод 13 предназначен для перевода TL-494 в режим управления обратноходовыми однотактными преобразователями. При этом "мёртвое время" может быть увеличено до 96%. В нашем, "двухтактном" случае этот вывод так же соединяется на Uref.

Компаратор на выводах 1-2 мы будем использовать для установки выходного напряжения, для этого на вывод 2 подаём часть Uref, что и сделано в большинстве АТ и АТХ. Обычно это напряжение примерно 2,5 вольт, т.е. с Uref (+5Вольт) через резистивный делитель.

RC цепочка с вывода 2 на вывод 3 (FB или ОС) предназначена для ограничения скорости ШИМ при стабилизации напряжения и имеется во всех схемах АТ-АТХ. Её тоже вырезать нельзя.

Рисую упрощённую схему управления выходным напряжением.

Напряжение на выходе БП будет равно Uвых=Uref1(1+Roc/Rm) . Теперь Вы должны сами с калькулятором в руках решить из каких резисторов составить делитель. Я это сделал как показано на схеме. Проверьте обязательно, если эта формула у Вас не заработала, значит Вы не всё урезали. Важно учесть, что без перемотки трансформатора более 18-20 вольт на 12-и вольтовом выходе получить не получится. В принципе БП может дать до 24 вольт, но это при отсутствии нагрузки и полностью "открытой" ШИМ, то есть, когда "мёртвое" время не более 4% от периода. Без дросселя БП будет чувствовать себя не очень комфортно. Ему будет трудно удержать выходное напряжение. Его будет "плющить и колбасить" как автомобиль с заклинившим амортизатором. Наша задача получить ограничение на уровне 14,6-14,8 Вольта. Для "убитых" аккумуляторов надо напряжение до 16 (и более) вольт. Для фанатов восстановления можно накрутить и столько.

На сладкое немного о выводе 4.

Это тоже вход компаратора, но с задержкой 120 мВольт. И тут дело даже не в задержке, а в том, что конструктор микросхемы предусмотрел использовать его для регулировки "мёртвого времени". Обычно в схемах АТХ-АТ его используют как "мягкий пуск" и для целей всяких защит. Вот эти защиты Вам и предстоит вырезать.

Работает ОНО так. При включении БП конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5 вольт, что наглухо закрывает выходные ключи микросхемы. Затем конденсатор заряжается через резистор (выв4-земля) и на выводе 4 напряжение падает до нуля. Это приводит к медленному нарастанию выходного напряжения до момента когда оно стабилизируется ОС по напряжению. В нашем случае вывод 4 целесообразно попутно задействовать для ограничения выходного тока. По схеме видно, что при увеличении тока в нагрузку увеличивается падение напряжения на измерительных резисторах (4 резистора 0,22 ом), открывается транзистор 733 (такой p-n-p у меня был из выпаянных), что приводит к подъёму напряжения на выводе 4 и так до режима стабилизации тока. На полной схеме цепь стабилизации тока обведена красным фломастером. Вот так простенько удалось добиться и стабильного тока зарядки и защиты от короткого замыкания на выходе.

Кстати, на выходе советую ни каких электролитических конденсаторов не ставить, тогда при "коротком" не будет ни каких брызг и взрывов, вызывающих неприятные ощущения.

О выходном дросселе.

Можно применить другой сердечник, например Ш-образный с зазором 0,3 мм. А можно оставить оригинальное кольцо, намотав на нём 20-30 витков тем, что мы размотали или тем, что будет под рукой, диаметром не менее 0,75мм. Я намотал 35 витков в два провода диаметром 0,75мм. Обмотка вложилась в два слоя.

...спустя год...

Просматривая даташит на микросхему KA7500 (аналог TL-494) я обнаружил другое, более простое решение стабилизации тока БП. Авторы предлагают использовать второй компаратор (выв.15,16). С учётом того, что изначально этот компаратор смещён на 80 мВ, получается очень удобное решение. Мною оно повторено дважды. В приводимой схеме выходное напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей будки. Для зарядки аккумуляторов естественно, можно использовать блок без перемотки, но всё-таки лучше перемотать. И провод желательно взять по толще, и виточков добавить.

При расчёте количества витков вторичной обмотки желательно, что бы на ХХ напряжение на выходе моста было больше стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и, соответственно, надёжную стабилизацию.

Странно, но оно работает. А вообще-то не должно. Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в каком-то нет. И вообще это смещение маловато для стабильной работы.
Поэтому я промакетировал подобную ОС на "спицах" и вот что получилось.

Для удобства макетирования я выбрал компаратор LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот теперь всё красиво. Компаратор срабатывает на 6,1 Ампера.
Красный луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор 0,15 Ом сделать легче и греться будет меньше, чем 0,3.
Тогда схема чуток меняется.

Перемотка трансформаторов (перемотал 5 штук) ни разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 - 200 градусов и в перчатках аккуратненько расшатываю.

Превращаем ненужный БП от компьютера в мощное зарядное устройство - лабораторный блок питания. Пошаговая фотоинструкция. Вначале ищем компьютерный блок питания формата ATX. ищем компьютерный блок питания формата ATX Выпаиваем всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Также нужно выпаять диод, (отмечено 1 на плате) соединяющий выходную обмотку силового трансформатора с + питания TL494 – она будет питаться только от маленького «дежурного» преобразователя (у него есть не только 5V выход, но и 12V), чтобы не зависеть от выходного напряжения БП. И обратите внимание на электролит отмененным 2-ой, его оставить, он бывает от 1 до 4.7мкф. Я его меняю на 10мкфХ10в. Делаем мощное зарядное устройство из БП АТХ Отсоединяем от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока. Делаем мощное зарядное устройство из АТХ Пунктиром очерчены детали, которые уже есть в БП. ЗАРЯДНОЕ УСТРОЙСТВО - ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ ATX - СХЕМА Выпрямительные диоды нужно соединить с 12-ти вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить более мощные, например сборку 30CPQ150 – тогда можно максимальный выходной ток увеличить до 20А. 30CPQ150 Дроссель L1 делаем из кольца, оставив на нём только 5-тивольтовую обмотку, дроссель L2 из цепи 5V. Дроссель БП делаем из кольца Приводим схему выходной части в соответствие со схемой. Вентилятор запитываем от питания TL494 (12 нога) – так, чтобы он дул внутрь корпуса. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494. Резисторы R9 и R8 задают опорные напряжения. мощное зарядное устройство из БП АТХ - пошаговая инструкция Переменный резистор R9 регулирует выходное напряжение, R8 – выходной ток. Так как мне не нужно напряжение, а только ток для зарядки, то напряжение сделал на полную (получилось 24в), а оставил только регулятор тока. Токоизмерительный резистор R7 на 0.05 ом должен быть мощностью 5 ватт (10А^2*0.05ом). Питание для ОУ берём с выхода «дежурных» 5В БП ATX (обычно обозначены на плате как +5V SB или 5V STANDBY, фиолетовый провод). Нагрузка подключается к +OUT и -OUT. Автомобильное зарядное устройство из БП АТХ - переделка и описание Измерительный резистор R7 – это два 5-тиваттных резистора (белые) по 0.1ом соединённые параллельно. Автомобильное зарядное устройство из БП АТХ компьютера Нагрузочный резистор 470ом 1 Вт ставим параллельно C5. Он нужен чтобы БП ATX без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 включён. Без него, тоже работать будет, но тогда если установить более низкое напряжение при отключенной от выхода нагрузке – долго ждать, пока C4 и C5 разрядятся до нужного напряжения. САМОДЕЛЬНОЕ ЗАРЯДНОЕ УСТРОЙСТВО - ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ Упаковываем все в корпус, выводим необходимые элементы, и радуемся отличному лабораторному блоку питания, он же по совместительству импульсное зарядное устройство для автомобильных аккумуляторов. Автор статьи и фото: ear


Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.


Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.


Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC - TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).


Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Схема №1.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.


Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.


Для удобства работы, сначала полностью открутим всю плату и вынем из корпуса.


На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.


В моём АТ блоке зеленого провода нет, поэтому он запускается сразу при включении в розетку. Если блок АТХ, то в нем должен быть зеленый провод, его необходимо припаять на "общий", а если пожелаете сделать отдельную кнопку включения на корпусе, то тогда просто поставьте выключатель в разрыв этого провода.


Теперь надо посмотреть на сколько вольт стоят выходные большие конденсаторы, если на них написано меньше 30v , то надо заменить их на аналогичные, только с рабочим напряжение не меньше 30 вольт.


На фото - черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).


Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.


Рис. №2 Вариант доработки на примере схемы №1

Расшифровка обозначений.


Делать надо примерно так , находим ножку №1 (где стоит точка на корпусе) микросхемы и изучаем, что к ней присоединено, все цепи необходимо удалить, отсоединить. В зависимости от того как у вас в конкретной модификации платы будут расположены дорожки и впаяны детали, выбирается оптимальный вариант доработки, это может быть выпаивание и приподнятие одной ножки детали (разрывая цепь) или проще будет перерезать дорожку ножом. Определившись с планом действий, начинаем процесс переделки по схеме доработки.




На фото - замена резисторов на нужный номинал.


На фото - приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к "общему", но там уже стоит R=3k подключенный к "общему", это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).






На фото - перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.


Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).


Эти приборы можно приобрести в Китайских интернет магазинах по самой выгодной цене, мой вольтметр мне обошелся с доставкой всего 60 рублей. (Вольтметр: )


Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО - внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.

Идея переделать обычный компьютерный блок питания (далее в некоторых моментах БП) в модульный приходит только оптимистам и профессиональным пользователям ПК. В данной статье мы подробно обговорим все нюансы создания вручную БП со сменными проводами.

Для начала давайте-ка узнаем, что такое блок питания и из чего он состоит. Блок питания — это устройство, обеспечивающее питание электроприбора электрической энергией. Состоит из следующих комплектующих:

Входные цепи:

Полупроводниковый резистор (предотвращает распространение помех в сеть)

Пассивный или активный коллектор мощности (снижает нагрузку на сеть)

Диодный мост

Конденсаторный фильтр

Выходные цепи:

Нагрузочные резисторы

Конденсаторы (выходные)

Дроссель групповой стабилизации (выходной)

Выпрямители (выходные)

Преобразователь:

Цепи обратной связи

Формирователь напряжения

Высокочастотный трансформатор (импульсный)

Схема управления самим преобразователем

Преобразователь (полумостовой)

Для чего нужен модульный блок питания:

Таким устройством хотят обзавестись, как правило, профессиональные геймеры, горящие желанием выжать все соки из своего железа. Открыто известно, что быстрый компьютер — это холодный компьютер. А в модульном БП как раз-таки отсутствуют лишние провода, что улучшает продуваемость и экономит место в системном блоке.

Особенности использования

Перед созданием модульного БП очень важно разобраться в его недостатках и преимуществах.

Преимущества:

Такие блоки питания, как правило, легко найти

Состоят из всех важных компонентов, в т. ч. готовых импульсных трансформаторов (ИТ)

Небольшой вес (до 2 кг), что в 5 раз меньше веса блока питания (трансформаторного)

Нет лишних проводов и, следовательно, путаницы

Универсальность

Недостатки:

Нет возможности применения для электрического питания радиостанций из-за наличия импульсного преобразования

При небольших нагрузках отсутствует низкое напряжение на выходе (менее 5 В)

Несмотря на недостатки, блок питания такого типа отлично подойдёт для проверки и отладки самых различных устройств, а также питания автомобильной электроники. А благодаря режиму стабилизации тока, его можно успешно использовать в роли ЗУ для аккумуляторов.

Важно: конденсаторы на плате внутри блока питания опасны (в работоспособном состоянии, разумеется). Именно поэтому важно оставить его не подключенным примерно на 48 часов, чтобы конденсаторы успешно разрядились. Но если вы хотите ускорить этот процесс, с помощью самой обычной скрепки просто замкните такие провода, как черный и зеленый (разъёма ATX). Далее включите всё еще не подключенный БП.

Процесс переделки

Инструменты

Ниже приведён перечень инструментов и материалов для изготовления модульного блока питания:

Блок питания (минимум 150 ватт)

Ручная дрель

Пассатижи

Кусачки

Развёртка (инструмент)

Паяльник

Изолента

Трубки (термоусаживаемые)

Клеммы (устройство, посредством которого провода присоединяют к аппарату)

Светоизлучающий диод (LED)

Резистор (токоограничивающий, для светодиода, 330 Ом)

Гасящий резистор

Низковольтный выключатель

Шнур питания

Процесс

Шаг 1. Вскрытие корпуса

Легко и непринуждённо откручиваем 4 болта на крышке и снимаем её.

Как можете видеть, передняя стенка нашего подопытного БП имеет структуру сетки, что для установки разъёмов не подойдет. Исходя из этого, нам надо будет часть верхней крышки прикрепить к данной сетке. Однако, если передняя часть вашего БП выполнена из сплошного металла, делать вышеперечисленные действия не нужно.

Мы переднюю панель сделали металлической по трем причинам:

Прикреплять его к нынешней конструкции довольно просто

Установка коннекторов для подключения модульного типа облегчится

Фронтальная стенка нашего БП сетчатая

Шаг 2. Установка необходимых разъёмов

Для подключения линии ATX (состоит из 24 контактов) мы будем использовать последовательный порт (состоит 25 контактов). Электрические соединители Molex мы подключим с помощью обычных 4-х контактных микрофонных разъёмов.

Размещать разъёмы начинаем с параллельного порта, т.к. другие линии проще переместить на несколько сантиметров, нежели основную ATX. Исходя из этого, линия ATX будет располагаться справа (весьма привычная для нее позиция), а остальные 4 разъёма будут в верхнем ряду. Размечаем, монтируем.

Важно: во время работы с мощными блоками питания (500+ ватт) обращайте внимание на качественные разъёмы, т.к. обычный порт (параллельный) не сможет выдержать высокой нагрузки мощного аппарата (например, игрового компьютера).

Шаг 3. Режем и «одеваем» кабели

Порядок резки кабелей полностью зависит от вас, но мы советуем сначала порезать самый длинный кабель, что сразу позволит избежать большого беспорядка внутри БП.

Шаг 4. Крышка для блока питания

Теперь, раз уж, созданный нами блок питания имеет провода с оплёткой, можно приступать к крышке. Можно приобрести в магазине готовую деталь (предпочтительно из акрила) за небольшую сумму, а можно сделать всё самому, благо в таком случае результат ограничен лишь вашей фантазией.

Ниже приведён пример акрилового корпуса:

Как видите, блок питания получился у нас довольно симпатичным. Этому поспособствовали два кулера с подстветкой. К тому же вы всегда сможете легко поменять оплётку кабелей и корпус под свой вкус.

Шаг 5. Включение

Первым делом подключим кабель к разъёму на тыльной стороне блока питания. Если в ваш БП встроен выключатель, включите его и обратите внимание, загорелся ли индикатор. Проверять работоспособность блока питания можно с помощью лампочки 12 В, подсоединяя её к выходам.

Важно убедиться в том, что ни у одного провода нет замыкания.

Готовые и альтернативные решения:

Что касается этого вопроса, здесь, думаю, наши читатели поделятся на 2 лагеря:

Те, кто предпочтут просто пойти и купить новый блок питания (неожиданно, правда?)

Те, кому большее удовольствие доставит само создание блока питания вручную

Что касается меня, то я могу лишь предупредить вас (если вы не очень разбираетесь в этой сфере) не пробовать разбирать/собирать блок питания, ибо это может закончиться плачевно: от порчи техники до фатального удара током.

Так что будьте бдительны и, главное, уверены в себе.

Самостоятельное изготовление блока питания также обладает своими преимуществами и недостатками:

Преимущества:

Не требуется больших затрат на всё

Не нужно быть инженером

Возможность создать нечто уникальное

Интересное занятие с некоторой пользой для себя

Недостатки:

Создать БП могут только люди, знающие принцип его работы

Опасность в виде высокого напряжения (выше 30 вольт/мА — летальный исход)

Такая переделка лишает блок питания гарантии стабильности

В неприятностях в работе системы виноваты будете только вы

Важно: при работе с источником питания вы обязательно должны быть не заземлены, иначе попадания тока в ваше тело не избежать. Не забывайте об этом ни на миг.

Выводы:

Вы стали свидетелем того, что без особых затрат и знаний инженера можно создать блок питания модульного типа, причём сделать его не только полностью работоспособным, но ещё и довольно аккуратным и стильным, давая волю своей фантазии.

Но важно помнить, что блок питания — не совсем простая вещь, а изменяя что-либо в нём, вы изменяете принцип работы всей системы — а это риск на нестабильность.

Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.

Последовательность действий по переделке БП ATX в регулируемый лабораторный.

1. Удаляем перемычку J13 (можно кусачками)

2. Удаляем диод D29 (можно просто одну ногу поднять)

3. Перемычка PS-ON на землю уже стоит.


4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши "вздутости", их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.

5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.


6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и "типа дроссель" L5.


7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.

8. Меняем плохие: заменить С11, С12 (желательно на бОльшую ёмкость С11 - 1000uF, C12 - 470uF).

9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 - у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:


10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (...2-ю ногу), С26, J11 (...3-ю ногу)


11. Не знаю почему, но R38 у меня был перерублен кем-то:) рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.

12. Отделяем 15-ю и 16-ю ноги микросхемы от "всех остальных", для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.


13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.

14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.


Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите

Лучшие статьи по теме